The series constitute ‘ideas in progress,’ after the notion described by I.J. Good in ‘The Scientist Speculates.’ Good also describes ideas about ideas as ‘partly baked ideas’ believing that ‘... it is often better to be stimulating and wrong than boring and right.’ While the papers do not take this tenet as an excuse for licence at the expense of rigour, they are exploratory and the ideas may change as a theme is developed over time.
To me there seems to be much confusion in the foresight world over the matter of thinking. In recent conversations, my colleagues have either proposed the notion of systems thinking or attacked it, declaring that there are other ways of thinking (that by implication may be better). ‘Systems thinkers’ themselves are partly to blame for this controversy. When I first penned this note I had been much taken by Bob Flood’s[1] explanation of systems thinking but now I am not so sure about it. Flood explained the matter as follows:

“Systemic thinking is then not something that can be explained easily and understood comprehensively … Very quickly we will lose touch with the notion of wholeness in a trivialised account of its so-called properties. Many textbooks … make this mistake … explaining the world in terms of systems and sub-systems, what a system is and how it behaves. An account in these terms … strips it [systemic thinking] of all essential meaning. Systemic thinking begins with an intuitive grasp of existence.” Flood went to claim that in Reason’s Human Inquiry in Action[2] these notions are expanded with the well-known systemic tenet that ‘phenomena as wholes never can be fully known for the very reason that we are part of them.’ Unfortunately, Reason was far from being the first person to set out the ‘well-known systemic tenet’ which stems from Gestalt psychology.

The attraction of Flood’s statement is the way it avoids the rigidity of many ‘definitions’ of systems thinking that abound in various texts. The allure of definitions seems to be too much to resist even though it may lead to confusion rather than clarity. The nature of thinking is related to an individuals behavioural pattern (which I described in Loveridge 1977[3]) and whether the outcome is to see a world of problems or of situations. Problems, it is supposed, can be solved - much of science depends on this attitude. Von Bertalanffy[4] and others, who were more concerned with the open systems of the living world, instigated and developed the notions of systems, disagreed with the problem centred view of the world, preferring to appreciate situations that can be neither ‘solved’ nor resolved into soluble parts, but can be ameliorated or simply changed for better or worse. Our grasp of wholeness will always be bounded, partial and subjective. Perhaps the allegory in the box below illustrates the point.

The concern that my colleagues have for different forms of thinking arise from the dominance of the idea of method, that processes follow stepwise rules rather than appreciation as Geoffrey Vickers[5] contended. As Wittgenstein claimed “methods pass the problem by” though I would demur from the attachment to ‘problems.’ Is their an art to thinking or should we assume that education teaches people to think? What
is the relation between thinking and learning? How close is acting, once dominated by ‘the method’, to thinking and learning? By contrast there is not a shred of evidence that any form of foresight is characterised by wholeness, but is fragmented into either single ideas or multiple sets of them with only the barest attempt to cope with or look for interrelationships. Entrepreneurs, inventors, scientists, businessmen, committees and bureaucracies, including policy-makers, are concerned with specific ideas or issues that come into focus from time to time and are rarely concerned with the interrelationships that characterise wholeness and living systems. Multiple single and collective acts of foresight shape the world in which humankind exists. All these activities are not only fragmented but are punctuated in time and pedestrian in their rate of progress (many are also pedestrian in their context and content). Because of these characteristics the saviour of humankind’s existence is the phenomenon of emergence in which self-organisation plays an immense part in creating the ‘safe-fail’ system identified by Holling[6]. Is this the real source of Adam Smith’s ‘invisible hand’ rather than the fateful and insecure one of economics with its invocation of exogenous variables? How do these characteristics relate to the current limited notions of sustainability? And to the deeper ones relating to humankind’s view of itself and of existence, of its place in the Earth as a system? Perhaps there is a case for saying ‘a plague on all definitions.’

Notes

1. Flood, R.L. *Rethinking the fifth discipline*, Routledge, 1999
4. Von Bertalanffy, L. Biologisches Zentralblatt, 49, 83, 1929